Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 658: 324-333, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113541

RESUMO

The development of unique single-atom catalysts with electron-rich feature is essential to promoting the photocatalytic CO2 reduction, yet remains a big challenge. Here, a conceptionally new single-atom catalyst constructed from atomically dispersed Ni-P3 species on black phosphorus (BP) nanosheets (BP-Ni) is synthesized for realizing highly efficient visible-light-driven CO2 reduction when trapping photogenerated electrons from homogeneous light absorbers in the presence of triethanolamine as the sacrificial agent. Both the experimental and theoretical calculation data reveal that the Ni-P3 species on BP nanosheets own the electron-rich feature that can improve the photogenerated charge separation efficiency and lower the activation barrier of CO2 conversion. This unique feature makes BP-Ni exhibit the much higher activity as cocatalyst in the photocatalytic CO2 reduction than BP nanosheets. The BP-Ni can also be applied as a cocatalyst for enhanced photocatalytic CO2 reduction after combining with CdSe/S colloidal crystal photocatalyst. The present study offers valuable inspirations for the design and construction of effective catalytic sites toward photocatalytic CO2 reduction reactions.

2.
J Colloid Interface Sci ; 627: 969-977, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35905583

RESUMO

As an emerging post-graphene two-dimensional material, black phosphorus (BP) has attracted enormous interest as a promising cocatalyst for photocatalytic hydrogen (H2) evolution, however, the activity of either pristine bulk or BP nanosheets is far from satisfactory. Herein, we present an effective strategy to greatly boost the H2 evolution performance of BP via applying the synergistic effect of heterojunction and interfacial lattice strain. A multilayered heterostructure coupling BP nanosheets and nickel oxide (NiO) nanosheets with abundant interface P-Ni and PO bonds is synthesized and utilized as a proof-of-concept material for our design. Both the experimental and theoretical results have revealed that the strain is formed in BP-NiO multilayered heterostructure. The generated lattice strain induces the charge redistribution at the interface between BP and NiO, which leads to the improved electron transfer efficiency and favorable H* adsorption kinetics for photocatalytic H2 evolution reaction. As a result, the BP-NiO heterostructure with strain effect exhibits much enhanced photocatalytic H2 evolution activity in the presence of Eosin Y (EY) as photosensitizer, exceeding that of zero-strained BP/NiO heterostructure and many other reported noble-metal-free cocatalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...